Study of Measuring The Cover Factor of Woven Fabrics Using Image Processing Techniques
Abstract
In this research, a method for measuring the cover factor of woven fabric using digital image processing techniques has been developed. The cover factor of woven fabric is measured by capturing a digital image of the fabric under examination using a digital microscope, converting the image into digital image information, storing this digital image information in digital memory, and performing digital image segmentation to determine the cover factor of the woven fabric. Cover factor measurements were conducted on seven samples of woven fabric with different densities. To validate the proposed method, the cover factor measurements obtained from image processing were compared with the theoretical cover factor obtained from the standard method. It was found that there was no significant difference between the results obtained from the conventional method and the proposed method (with a significance value of 0.95).
Downloads
References
Admas, A., & Assefa, A. (2024). Effects of Loom Speed, Insertion Air Pressure, and Yarn Type on Fabric Air Permeability: Case Study on Air Jet Loom. Journal of Engineering, 2024(1), 2660559.
Ahmed, S., (2021). A study on the physical properties of 100% cellulosic woven fabrics. J Textile Eng Fashion Technol, 7(4), pp.127-132.
Akgun, M., Günaydın, G.K., Gürarda, A.Y.Ç.A. and Ceven, E.K., (2020). Investigation of the comfort properties of traditional woven fabrics with different structural parameters. Industria Textila.
Ängeslevä, M., Salmimies, R., Rideal, G., Hilden, J., Wagner, C., Wiegmann, A., & Häkkinen, A. (2023). Comparison of methods for measuring and investigating water permeability of woven filter media. Chemical Engineering Research and Design, 190, 520-535.
Ängeslevä, M., Salmimies, R., Sihvonen, T., & Häkkinen, A. (2024). Woven filter media used in wet filtration processes: investigation of pore size distribution, air and water permeability and finding correlations between them. Textile Research Journal, 94(7-8), 869-885.
Badawi, S. S. (2023). Geometrical and Mathematical Analysis of the Elongation of Woven Fabric Structures. International Design Journal, 13(3), 411-422.
Başer, G. (2023). Structural And Aesthetic Design Of Woven Fabrics. Tekstil ve Mühendis, 30(129), 85-94.
Beyene, K. A., & Muhammed, N. (2023). Linear model equation for prediction and evaluation of surface roughness of plain-woven fabric. Textile and Apparel, 33(1), 88-94.
Beyene, K. A., Gebeyehu, E. K., & Adamu, B. F. (2023). The effects of pretreatment on the surface roughness of plain-woven fabric by the Kawabata Evaluation System. Textile Research Journal, 93(9-10), 2149-2157.
Cardamone, J.M., Damert, W.C., Phillips, J.G. and Marmer, W.N., (2002). Digital image analysis for fabric assessment. Textile Research Journal, 72(10), pp.906-916.
Castellar, M.D., Manich, A.M., Carvalho, J. and Barella, A., (1997). An application of the image analysis to the woven fabric cover factor determination. In Niches in the World of Textiles: the 77th World Conference of the Textile Institute, Tampere (Vol. 2, pp. 56-72).
Chatterjee, B. (2023). Woven fabric structure. In Textile Calculation (pp. 215-236). Woodhead Publishing.
Dejene, B. K., & Ayele, M. (2024). Impact of Weft Yarn Structure and Fiber Type on Weft Yarn Velocity and Twist Loss in Air-Jet Weaving: A Critical Review. Journal of Natural Fibers, 21(1), 2365961.
Dias, T. and Delkumburewatte, G.B., (2008). Changing porosity of knitted structures by changing tightness. Fibers and Polymers, 9, pp.76-79.
Dincer, M., Karci, E., Sahin, I. H., Emre, C., Ozkendirci, B., Yenigun, E. O., & Cebeci, H. (2023). Effect of linear density on the mechanical properties of 3D spacer composites with improved manufacturing quality. Composite Structures, 323, 117518.
Douguet, O., Buet-Gautier, K., Leyssens, G., Bueno, M. A., Mathieu, D., Brilhac, J. F., & Tschamber, V. (2023). Evaluation of structural parameters to predict particle filtration and air permeability performance of woven textiles. Textile Research Journal, 93(19-20), 4686-4700.
Gungor Turkmen, B., Celik, P., Sehit, H., & Bedez Ute, T. (2024). The effects of hollow yarn and fabric structure on permeability and moisture management properties of woven fabrics. The Journal of The Textile Institute, 115(4), 527-534.
Islam, S., & Mozumder, A. K. (2024). Effect of weave structures and thread densities on the cover factor and mechanical properties of cotton spandex woven fabrics. The Journal of The Textile Institute, 115(3), 479-489.
Kang, T.J., Choi, S.H., Kim, S.M. and Oh, K.W., (2001). Automatic structure analysis and objective evaluation of woven fabric using image analysis. Textile Research Journal, 71(3), pp.261-270.
Kharbanda, A. K., Dasarathan, K. R., Sinha, S. K., Senthil Kumar, T., & Senthil Kumar, B. (2024). Experimental investigation of mechanical and comfort properties of banana/cotton blended woven fabrics. Research Journal of Textile and Apparel.
Kostajnšek, K., & Bizjak, M. (2023). Estimation of permeability properties of technologically developed jacquard fabrics: Original scientific paper. HEMIJSKA INDUSTRIJA (Chemical Industry), 77(3), 191-202.
Lei, M., Li, Y., Liu, Y., Ma, Y., Cheng, L., & Hu, Y. (2020). Effect of weaving structures on the water wicking–evaporating behavior of woven fabrics. Polymers, 12(2), 422.
Li, K. Y., Tang, X. W., Fei, M. L., Chen, W. L., Liang, J. X., & Xiang, Q. Q. (2023). Woven geotextile permeability under uniaxial and laterally constrained conditions. Geosynthetics International, 1-11.
Özdil, N., Özgüney, A.T., Mengüç, G.S. and Sertsöz, S., (2014). Influence of yarn and fabric construction parameters on drape and bending behaviour of cotton woven fabrics. Textile and Apparel, 24(2), pp.169-179.
Putra, V.G.V., Wijayono, A., Rosyidan, C. and Mohamad, J.N. (2020). A Development of Textile Fabric Homogeneity Based on Computational Physics (Image Processing) with MATLAB. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 17(2), pp.131-137.
Riaz, M. T., Khan, M. I., Shaker, K., Nawab, Y., & Umair, M. (2023). Effect of cellulosic material and weave design on comfort performance of woven fabrics. Journal of Natural Fibers, 20(1), 2163030.
Song, L., Tao, Y., Cheung, T. W., & Li, L. (2023). A design-driven creation of an innovative and environment-friendly nature-based yarn with moisture wicking and fast-drying effect. Textile Research Journal, 93(15-16), 3856-3868.
Spencer, D.J., (2001). Knitting technology: a comprehensive handbook and practical guide (Vol. 16). CRC press.
Tahvildar, A., Ezazshahabi, N. and Mousazadegan, F., (2019). Appearance and comfort properties considering yarn-spinning system and weave structure in worsted woven fabrics. Journal of Engineered Fibers and Fabrics, 14, p.1558925019845978..
Vasile, S., Vermeire, S., Vandepitte, K., Troch, V., & De Raeve, A. (2024). Effect of Weave and Weft Type on Mechanical and Comfort Properties of Hemp–Linen Fabrics. Materials, 17(7), 1650.
Wardiningsih, W. and Troynikov, O., (2012). Influence of cover factor on liquid moisture transport performance of bamboo knitted fabrics. Journal of the Textile Institute, 103(1), pp.89-98.
Wijayono, A. and Putra, V.G.V., (2018). Stitch Per Inch Measurement Using Image Processing Techniques. Arena Tekstil, 33(2), p.372210.
Wijayono, A. and Putra, V.G.V., (2020). Pengukuran Permitivitas Dielektrik Bahan Kain Non Woven Menggunakan Kapasitansi Meter Arduino Uno Dan Prinsip Kerja Kapasitor Plat Sejajar. Jurnal Fisika Indonesia, 24(3), pp.109-117.








