Development of Biodegradable Nonwoven Mulch Mats from Ijuk Fiber for Sustainable Agriculture
Abstract
Abstract: Nonwoven agrotextile made from ijuk fiber (Arenga pinnata Merr.) was developed as a biodegradable mulch alternative for sustainable tropical agriculture. This study produced mulch mats using a combination of needle punching and thermal bonding at bonding pressures of 25, 50, and 75 bar. Physical and mechanical properties were evaluated in terms of tensile strength, elongation, basis weight, thickness, water absorption, and air and water permeability. The results showed that 75 bar yielded the highest tensile strength (0.19 kN), optimal elongation (15.92 %), and superior water–air permeability, whereas 25 bar excelled in basis weight (46.07 g/m²), thickness (2.55 mm), and water absorption (334.10 %). Pressure variation significantly (p < 0.05) influenced all parameters, indicating that bonding pressure is a key variable for balancing mechanical strength with agronomic functions—drainage, aeration, and moisture retention. With tunable structural and functional performance, ijuk fiber mulch mats offer an eco‑friendly solution capable of replacing single‑use plastic mulches. Scaling up this product could support sustainable agricultural practices and reduce plastic waste in peatland areas.
Keywords: agrotextile, mulch mat, ijuk fiber, nonwoven, sustainable
Downloads
References
ASTM International. (2022). ASTM D3776/D3776M-17: Standard Test Methods for Mass Per Unit Area (Weight) of Fabric. West Conshohocken, PA: ASTM International.
ASTM International. (2017). ASTM D1777-96 (Reapproved 2017): Standard Test Method for Thickness of Textile Materials. West Conshohocken, PA: ASTM International.
ASTM International. (2018). ASTM D737-18: Standard Test Method for Air Permeability of Textile Fabrics. West Conshohocken, PA: ASTM International.
Badan Standardisasi Nasional. (2001). SNI 08-6511-2001: Metode Uji Daya Tembus Air pada Geotekstil. Jakarta: BSN.
Bhat, G. S. (2004). Thermal bonding of polypropylene nonwovens: Effects of bonding variables on the structure and properties of the fabrics. Journal of Applied Polymer Science, 92(6), 3593–3600.
Chmielewska-Pruska, K. S. (2025). Structure and physical properties of BioPBS melt-blown nonwovens. AUTEX Research Journal, 25(1), 20240023.
Cichocki, P. D. (2023). Performance and degradation of nonwoven mulches made of jute, hemp, viscose, and PLA. Polymers, 15(4), 110.
Cincik, M. &. (2015). Effect of thickness, porosity and density on the air permeability of needle-punched non-woven fabrics. AUTEX Research Journal, 15(1), 8–14.
Duan, X. L. (2023). Sugar palm (Arenga pinnata) fibers: New emerging natural fibre and its relevant properties, treatments and potential applications. Journal of Cleaner Production.
Faruk, O. B.-P. (2019). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596.
Gaminian, H. A. (2024). Revolutionizing sustainable nonwoven fabrics: The potential use of agricultural waste and natural fibres for nonwoven fabric. Biomass, 4(2), 363–401.
Gunawan Pandiangan, N. R. (2024). Sifat daya serap air dan kekuatan tarik komposit epoksi berpenguat serat sabut kelapa. Prosiding Seminar Nasional Teknologi Industri Berkelanjutan IV (SENASTITAN IV), 1–7.
International Organization for Standardization. (2000). ISO 9073-6:2000 Textiles – Test Methods for Nonwoven Fabrics – Part 6: Water Absorption. Geneva: ISO.
Isidro, A. &. (2023). Strength Performance of Nonwoven Coir Geotextiles as an Alternative Material for Slope Stabilization. Applied Sciences, 13(13), 7590.
Kopitar, D. M. (2022). Biodegradable nonwoven agrotextile and films—A review. Polymers, 14(11), 2272.
Liu, X. C. (2021). Development of natural fiber based degradable nonwoven mulch from recyclable mill waste. Waste Management, 121, 432–440.
Marasović, P. K. (2023). Performance and degradation of nonwoven mulches made of natural fibres and PLA polymer—Open field study. Polymers, 15(22), 4447.
Marasović, P. S. (2019). Overview and perspective of nonwoven agrotextile. . Textile and Leather Review, 2(1), 23–30.
Martinez, E. F. (2020). Development of natural fiber based degradable nonwoven mulch from recyclable mill waste. Journal of Environmental Management, 265, 110584.
Nguyen, T. &. (2021). Development of natural fiber based degradable nonwoven mulch from recyclable mill waste. Journal of Cleaner Production, 290, 125781.
Pabjańczyk-Wlazło, E. K. (2022). The Influence of Surface Modification with Biopolymers on the Structure of Melt-Blown and Spun-Bonded Poly(lactic acid) Nonwovens. Materials, 15(20), 7097.
Putri, N. N. (2024). Sintesa dan Karakterisasi Geo-Textile Nonwoven Berbahan Limbah Tandan Kosong Kelapa Sawit (TKKS). Repository IPB University.
Rahmadani, F. S. (2022). Improving Mechanical Properties of Biofoam Using Oil Palm Fiber as Filler at Various Temperatures and Processing Times. Jurnal Teknik Pertanian Lampung, 11(2), 45–53.
Rogale, D. &. (2024). Energy and Environmental Aspects of the Sustainability of Clothing Production. Sustainability, 16(20), 9100.
Sana, A. W. (2020). Aplikasi Serat Alam Biduri (Calotropis gigantea) sebagai Bahan Pengisi Insulatif pada Jaket Musim Dingin. Arena Tekstil, 35(1), 1–12.
Senthilkumar, S. R. (2023). Agro¬textiles: Important Characteristics of Fibres and Their Applications. Journal of Industrial Textiles, 1692–1710.
Sreekumar, A. &. (2018). Effect of thermal bonding temperature and pressure on the mechanical properties of nonwoven kenaf–polyester blends. Industrial Crops and Products, 112, 702–708.
Tanasă, F. N.-E.-A. (2022). Geotextiles—A versatile tool for environmental sensitive applications in geotechnical engineering. Textiles, 2(2), 189–208.
Vujović, D. M. (2023). Effect of biodegradable nonwoven mulches from natural and renewable sources on lettuce cultivation. Agronomy, 13(2), 379.
Zhang, H. L. (2020). Recent advances in nonwoven materials for filtration and related applications: Structure–performance relationships. Separation and Purification Technology, 247, 116666.
Zhang, Y. &. (2018). The influence of pressure sum, fiber blend ratio, and basis weight on wet strength and dispersibility of wood pulp/Lyocell wetlaid/spunlace nonwovens. Journal of Wood Science, 64, 256–263.